Electronic structure engineering of various structural phases of phosphorene.

نویسندگان

  • Sumandeep Kaur
  • Ashok Kumar
  • Sunita Srivastava
  • K Tankeshwar
چکیده

We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vertical pressure induces metallization in the considered structures. The γ-P homo-bilayer structure showed the highest ultimate tensile strength (UTS ∼ 6.21 GPa) upon in-plane stretching. Upon application of a transverse electric field, the variation in the bandgap of hetero-bilayers was found to be strongly dependent on the polarity of the applied field which is attributed to the counterbalance between the external electric field and the internal field induced by different structural phases and heterogeneity in the arrangements of atoms of each surface of the hetero-bilayer system. Our results demonstrate that the electronic structures of the considered hetero- and homo-bilayers of phosphorene could be modified by biaxial strain, pressure and electric field to achieve the desired properties for future nano-electronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of metal adatoms on single-layer phosphorene.

Single- or few-layer phosphorene is a novel two-dimensional direct-bandgap nanomaterial. Based on first-principles calculations, we present a systematic study on the binding energy, geometry, magnetic moment and electronic structure of 20 different adatoms adsorbed on phosphorene. The adatoms cover a wide range of valences, including s and p valence metals, 3d transition metals, noble metals, s...

متن کامل

Out-of-plane structural flexibility of phosphorene.

Phosphorene has been rediscovered recently, establishing itself as one of the most promising two-dimensional group-V elemental monolayers with direct band gap, high carrier mobility, and anisotropic electronic properties. In this paper, surface buckling and its effect on its electronic properties are investigated by using molecular dynamics simulations together with density functional theory ca...

متن کامل

Solvent Influences on the Structure, Thermochemical Parameters, and Electronic Properties in a Carbyne Complex Catalyst: OsCl3(=CCH2CMe3)(PH3)2

In this study, the carbyne complex, OsCl3(=CCH2CMe3)(PH3)2, structural, themochemical andelectronic properties were studied in solution and gas phases. For this investigation, the chosensolvents were five solvents (methanol, acetone, ethanol, DMSO, nitromethane) with variouspolarities. The influence of solvent polarity on the thermodynamic, structural, solvation energyparameters and frontier or...

متن کامل

Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene

Phosphorene has recently attracted significant interest for applications in electronics and optoelectronics. Inspired by this material an ab initio study was carried out on new two-dimensional binary materials with a structure analogous to phosphorene. Specifically, carbon and silicon monochalcogenides have been considered. After structural optimization, a series of binary compounds were found ...

متن کامل

Abnormal linear elasticity in polycrystalline phosphorene.

Phosphorene, also known as monolayer black phosphorous, has been widely used in electronic devices due to its superior electrical properties. However, its relatively low Young's modulus, low fracture strength and susceptibility to structural failure has limited its application in nano devices. Therefore, in order to design more mechanically reliable devices that utilize phosphorene, it is neces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 27  شماره 

صفحات  -

تاریخ انتشار 2016